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SUMMARY

Elliptic equations arising in free-surface ocean models are typically solved using iterative methods.
Anisotropy associated with standard spherical co-ordinate systems causes the convergence of the iterative
methods to be slow, particularly in polar regions. This behaviour is demonstrated here using a diagonally
preconditioned conjugate gradient method (PCG) method to solve a Helmholtz elliptic model problem
with a standard �ve-point discretization scheme on a 2D spherical domain. The cause of the poor polar
convergence is shown to be the increased importance, with increased mesh anisotropy, of eigenmodes
with strong polar signals. Block diagonal and alternating direction implicit (ADI) preconditioners are
found to give improved convergence. Crown copyright 2005. Reproduced with the permission of Her
Majesty’s Stationery O�ce. Published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most ocean models in use today are based on integrating the incompressible primitive equa-
tions on a sphere. Complex topography is used at the ocean bottom and the ocean surface is
either �xed or free to move with time. The ocean basins themselves typically contain irregu-
larly shaped coastlines and islands which require the inclusion of speci�c boundary conditions
into any solution algorithm.
The equations that arise in the free-surface models are elliptic and isotropic. They are

rendered mesh anisotropic by the use of spherical co-ordinates. An operator is anisotropic if
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its local properties vary with direction. As an example, we consider a Helmholtz equation
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discretized on a sphere. If the coe�cients are such that L� is much larger than L�, then
the discrete operator is poorly conditioned. This is an example of strong anisotropy. In the
ocean models, the e�ects of mesh anisotropy are seen in the latitudinally varying rates of
convergence of the iterative methods. Poor rates of convergence are observed in polar regions.
In these cases, L� ≈ L� in equatorial regions, but L� � L� in polar regions. This is an
example of inhomogeneous anisotropy. In these cases, an operator is inhomogeneous if its
properties, when measured in a particular direction, change with location. Signi�cantly higher
errors in the iterates are observed in the polar regions than in equatorial and mid-latitude
regions.
The main aim of this paper is to explain how the mesh anisotropy of the elliptic problem

causes the poor polar convergence in the PCG method. The standard diagonal preconditioner
is used for illustration. As alternatives, block diagonal and alternating direction implicit (ADI)
preconditioners are also considered and their impact on the convergence speeds and condi-
tioning are investigated.

2. FREE-SURFACE OCEAN MODEL

Many of the ocean general circulation models currently in use are based on the Bryan–Cox–
Semtner (henceforth BCS) model initially introduced by Bryan [3] in the late 1960s and later
modi�ed by Cox [4] and Semtner [10]. The BCS model solves the primitive equations in a
spherical co-ordinate system using hydrostatic and Boussineq approximations. The formulation
of the BCS model we investigate here is the implicit free-surface barotropic formulation
introduced by Dukowicz [5] and summarized brie�y as follows. The barotropic, or vertically
averaged, equations of state are given by
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where � and � are longitude and latitude, respectively, � is the free-surface height, f is
the Coriolis parameter, g is the gravitational acceleration constant, H =H (�; �) is the total
depth of the ocean, u=(u; v) are the barotropic velocity components, and Gx, Gy represent
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baroclinic forcing. Dukowicz [5] proposes the general time discretization of Equation (2)
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with

u�
′
= �′un+1 + (1− �′ − �′)un + �′un−1

�� = ��n+1 + (1− �− �)�n + ��n−1

u� = �un+1 + (1− �)un
(4)

where � is the �xed timestep, n is the current time level and �, �′, �, �′ and � are coe�cients
used to parameterize the time centreing of the pressure gradient, Coriolis, and divergence
terms. Eliminating un+1 and vn+1 in (3) and rearranging, we obtain an implicit equation for
�′ that represents the change in free-surface height, �, between two consecutive timesteps of
the free-surface ocean model. The elliptic operator, which is solved at every timestep, is of
the form
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where �=1=(2��g�), and S(�; �) is a nonlinear forcing term.

3. PRECONDITIONERS FOR MODEL PROBLEM

We consider a limited area, northern hemisphere, Helmholtz model problem of the following
form in our numerical experiments
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U (0◦E;�)=0; U (30◦E;�)=0 (6)

U (�; 10◦N )=0; U (�; l)=0

�∈ (0◦E; 30◦E); �∈(10◦N; l); l∈(40◦N; 89:5◦N )

where k¿0 (we use k=0:01 in the displayed results), and � is known. This is a simpli�ed
version of (5) containing the essential features of the problem. In our experiments we in-
vestigate the e�ects of moving the northern boundary of the domain closer to the pole. We
discretize the problem using a standard �ve-point �nite di�erence scheme with a constant step
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size h in both directions and taking a natural ordering of the grid points. This gives rise to a
matrix equation of the general form

AU= b (7)

where the variable U is a (unknown) column vector of the grid point values of the variable U
and b is a (known) column vector representing boundary values and source terms. The sys-
tem matrix A is a real, symmetric, m×m matrix representing the discretized model equations
(where m is the number of grid points). It is also square, sparse, irreducible and diago-
nally dominant with strict diagonal dominance in at least one row. It is therefore irreducibly
diagonally dominant and hence positive-de�nite [11].
Free-surface ocean models typically use a PCG method with a preconditioner containing

only the diagonal elements of A to solve (7). The PCG method may be thought of as an accel-
eration procedure for a stationary method with iteration matrix GP= I −P−1A, where P is the
preconditioner [7]. The diagonally preconditioned iteration matrix is given by GD= I −D−1A,
where D=diag(A), whilst the block preconditioned method uses P=B=blockdiag(A), with
each diagonal block consisting of all points on one latitude in the grid. The ADI precondi-
tioned iteration matrix, GADI [11] is similar to

(�I −H�)(�I +H�)−1(�I − V�)(�I + V�)−1 (8)

where

(H�U )(�i; �j) =−U (�i + h; �j) + 2U (�i; �j)−U (�i − h; �j) + kU (�i; �j)=2
(V�U )(�i; �j) =−U (�i; �j + h) + 2U (�i; �j)−U (�i; �j − h) + kU (�i; �j)=2

(9)

and � is a free parameter. The matrices de�ned in (9) have the following properties :H
and V are Stieltjes matrices and are diagonally dominant and positive-de�nite with positive

0.99 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

REAL
0.99 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1

REAL

IM
A

G
IN

A
R

Y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

IM
A

G
IN

A
R

Y

Figure 1. Leading eigenvalues of GD with real parts greater than 0:99 plotted on the complex plane for
cases l=40◦ and 89◦, respectively, h=1◦.
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diagonal entries and non-positive non-diagonal entries. The preconditioning step involves one
sweep of the ADI scheme. The convergence of the PCG method with preconditioned iteration
matrices G(D); G(B); G(ADI) for solving the discrete approximations (7) to problem (6) is
established in Reference [2] using results from References [1, 6–9, 11].

4. NUMERICAL EXPERIMENTS

Figure 1 shows the e�ect that the increased anisotropy due to moving the northern boundary
closer to the pole has on the eigenvalues of GD. We observe the clustering of secondary
eigenvalues of GD near the slightly larger, leading eigenvalue. The errors projected onto the

Figure 2. Leading four eigenvectors of GD for the case l=88◦, h=1◦, plotted for a 30◦ segment of
longitude (horizontal axis) vs. latitude (vertical axis) on the unit sphere.
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Table I. Variation of condition number with varying northern boundary.

	(A)

Boundary h= 1
2

◦
h=1◦ h=2◦

40◦ 2:19× 103 544.18 134.17
70◦ 4:28× 103 1:04× 103 249.57
88◦ 3:12× 104 6:51× 103 1:21× 103
89◦ 5:20× 104 9:75× 103 NA

Table II. Variation of condition number and spectral radii
with preconditioners, l=88◦, h=1◦.

Preconditioner 	(P−1A) 
(GP)

None 6:51× 103 —
Diagonal 691.92 0.9960
Block 293.92 0.9901
ADI 139.31 0.9601

eigenvectors associated with these eigenvalues will converge more slowly as the anisotropy
increases. Figure 2 shows the leading four eigenvectors of GD. We see that the lead eigenmode
does not possess a signi�cant signal in the polar region and for this reason, as the boundary
is moved northwards, the spectral radius of GD varies little. It is the secondary eigenmodes
that become more signi�cant with increased anisotropy and therefore converge more slowly.
This causes the poor polar convergence.
Tables I and II show the e�ects on the conditioning of the problem of the increased

anisotropy due to moving the northern boundary closer to the pole, and of the use of the
di�erent preconditioners. We observe that moving the boundary nearer to the pole causes
the conditioning to increase by more than an order of magnitude. We also observe that
the conditioning of the matrix with the block preconditioner is better than with the diag-
onal preconditioner, with ADI preconditioning giving a further improvement on that. We
would therefore expect ADI preconditioning and, to a lesser extent, block preconditioning to
yield better convergence rates than the diagonal preconditioner. This can, indeed, be seen in
Figure 3. The �gure shows the residual errors after a �xed amount of CPU time, with ADI
and block preconditioning clearly superior.

5. CONCLUSIONS

Our analysis of the eigenvectors and eigenvalues of the iteration matrix GD of our iterative
method leads us to conclude that the problem of larger residual errors in polar regions of our
model is due to the increased importance, with increased mesh anisotropy, of ‘nearly’ leading
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Figure 3. Latitudinal variance in convergence for limited area Helmholtz problem with diagonal,
block and ADI preconditioners, l=88◦, h=1◦.

eigenvectors with signi�cant signals in polar regions. Our numerical experiments have shown
that block Jacobi and particularly ADI preconditioners can yield considerable reductions in
the large residual errors in polar regions and hence improve the overall convergence speeds of
the elliptic solvers on the sphere. Further details of this work may be found in Reference [2].

ACKNOWLEDGEMENTS

We would like to thank Beatrice Pelloni, Amos Lawless and Graham Rickard for their assistance
with this research. Support for this research was received from the Engineering and Physical Sciences
Research Council of the U.K. (EPSRC) and from the Met. O�ce.

REFERENCES

1. Axelsson O. Iterative Solution Methods. Cambridge University Press: New York, 1994.
2. Brown DE. Preconditioners for inhomogeneous anisotropic problems with spherical geometry in ocean modelling.
Ph.D. Thesis, Department of Mathematics, The University of Reading, 2004.

3. Bryan K. A numerical method for the study of the circulation of the world ocean. Journal of Computational
Physics 1969; 4:347–376.

4. Cox MD. A primitive equation, three-dimensional model of the ocean. GFDL Ocean Group Technical
Report 1, Geophysical Fluid Dynamics Laboratory, Princeton University, 1984.

5. Dukowicz JK, Smith RD. Implicit free-surface method for the Bryan–Cox–Semtner ocean model. Journal of
Geophysical Research 1994; 99:7991–8014.

6. Feingold DG, Varga R. Block diagonally dominant matrices and generalizations of the Gerschgorin theorem.
Paci�c Journal of Mathematics 1962; 12:1241–1250.

7. Golub GH, Van Loan CF. Matrix Computations. Johns Hopkins University Press: Baltimore, MD, 1983.
8. Hackbusch W. Iterative Solution of Large Sparse Systems of Equations. Springer: Berlin, 1994.
9. Nichols NK. Numerical solution of elliptic di�erential equations. Ph.D. Thesis, Department of Mathematics,
Oxford University, 1969.

10. Semtner AJ. Finite-di�erence formulation of a world ocean model. In Advanced Physical Oceanographic
Numerical Modelling, O’Brien JJ (ed.). Reidel Publishing Co.: Dordrecht, 1986; 187–202.

11. Varga RS. Matrix Iterative Analysis. Prentice-Hall: Englewood Cli�s, NJ, 1962.

? Crown copyright 2005. Reproduced with the permission of Her
Majesty’s Stationery O�ce. Published by John Wiley & Sons, Ltd. Int. J.Numer.Meth. Fluids 2005; 47:1213–1219


